Pumpkin Muffins

MAKES 12 MUFFINS
TIME: 45 MINUTES
(INCLUDES 35 MINUTES BAKING AND COOLING TIME)

If you like, mix ¾ cup raisins into the dry ingredients before adding them to the wet ingredients. An equal amount of toasted walnuts, pecans, or even pumpkin seeds (commonly sold as pepitas) also makes a nice addition.

1¼ cups (8¾ ounces) unbleached all-purpose flour
1 tablespoon baking powder
1 teaspoon ground cinnamon
½ teaspoon ground ginger
¼ teaspoon ground cloves
½ teaspoon salt
1 large egg
1 cup packed (7 ounces) dark brown sugar

1½ cups canned pumpkin pie filling
8 tablespoons (1 stick) unsalted butter, melted and cooled slightly

1. Adjust an oven rack to the middle position and heat the oven to 375 degrees. Spray a standard muffin tin with nonstick cooking spray.

2. Whisk together the flour, baking powder, cinnamon, ginger, cloves, and salt in a medium bowl until combined. Whisk together the egg and brown sugar in a large bowl until combined. Add the pumpkin pie filling to the egg mixture and whisk to combine. Add the butter and stir vigorously until thick and homogeneous. Add half of the dry ingredients to the pumpkin mixture and stir with a rubber spatula or wooden spoon until the two begin to come together; then add the remaining dry ingredients and stir until just combined (do not overmix).

3. Use an ice cream scoop or a large spoon

INGREDIENTS:

Muffins, biscuits, and scones, as well as cookies and cakes, get their rise from chemical leaveners—baking soda and baking powder—rather than yeast. Chemical leavenings react with acids to produce carbon dioxide, the gas that causes these baked goods to rise.

To do its work, baking soda relies on an acid in the recipe, such as buttermilk or molasses. It’s important to use the right amount of baking soda; use more than can be neutralized by the acidic ingredient and you’ll end up with a metallic-tasting, coarse-crumbed muffin or cake.

Double-acting baking powder is made of baking soda (the single-acting ingredient), another rise ingredient (such as sodium aluminum sulfate and/or calcium phosphate), and cornstarch (a buffer to keep the ingredients separate in the can). Baking powder goes to work immediately when mixed with a liquid and gets a second lift when it hits the heat of an oven. Although most markets carry just one kind of baking soda, you do have a choice of baking powders, so we put four nationally available brands to the test.

Two brands, Davis and Clabber Girl, contain both sodium aluminum sulfate and calcium phosphate. Calumet contains both of these ingredients along with calcium sulfate, which according to the label “maintains leavening,” while Rumford has just calcium phosphate.

We wondered if these leaveners would perform differently. Also, some experts say baking powders with aluminum can give baked goods an off flavor. Is this true?

Based on our tests with a simple biscuit recipe containing just flour, baking powder, salt, and cream, you don’t need to worry about finding a specific brand of baking powder when shopping. All four biscuits were nearly identical in appearance. A couple of sensitive tasters did notice a faint chemical taste in the biscuits made with Clabber Girl but admitted that if they hadn’t been looking for it, they wouldn’t have noticed it at all.

Chemical Leaveners
to drop the batter into the greased muffin tin. Bake until golden and a toothpick inserted into the center of a muffin comes out clean, 18 to 22 minutes, rotating the pan from front
to back halfway through the baking time. Cool the muffins in the tin for 5 minutes and then transfer them to a wire rack and cool for 10 more minutes. Serve warm.

INGREDIENTS: Bleached versus Unbleached Flour

In the test kitchen, we always use unbleached all-purpose flour, and we call for this kind of flour in our recipes. Never use cake or bread flour in a recipe that calls for all-purpose flour, and it’s best not to use bleached flour in recipes that call for unbleached. Here’s why.

All-purpose flour is typically made from hard red winter wheat, soft red winter wheat, or a combination of the two. Hard winter wheat is about 10 to 13 percent protein; soft wheat is about 8 to 10 percent. Mixtures of the two wheats are somewhere between the extremes. You can actually feel this difference with your fingers; the hard wheat flours tend to have a subtle granular feel, while soft wheat flours feel fine but starchy, much like cornstarch.

High-protein bread flours (with a protein content of 12 to 13 percent) are generally recommended for yeasted products and other baked goods that require a lot of structural support. The reason is that the higher the protein level in a flour, the greater the potential for gluten formation. The sheets that gluten forms in dough are elastic enough to move with the gas released by yeast, yet sturdy enough to prevent that gas from escaping, so the dough doesn’t deflate.

On the other hand, lower-protein cake flours (with a protein content of 8 to 9 percent) are recommended for chemically leavened baked goods. This is because baking powder and baking soda are quick leaveners. They lack the endurance of yeast, which can force the naturally resistant gluten sheets to expand. Gluten can overpower quick leaveners, causing the baked product to fall flat.

All-purpose flours (most have a protein content of 10 to 12 percent) are best for baking jobs where you want some structure but not too much—as in most cookies, quick breads, pie dough, and many cakes.

All all-purpose flours are not the same; some are bleached, and some are not. Technically, they all are. Carotenoid pigments in wheat lend a faint yellowish tint to freshly milled flour. But in a matter of about 12 weeks, these pigments oxidize, undergoing the same chemical process that turns a sliced apple brown. In this case, yellowish flour changes to a whiter hue (though not stark white). Early in the 20th century, as the natural leaching process came to be understood, scientists identified methods to chemically expedite and intensify it. Typically, chemically bleached all-purpose flours are treated with either benzoyl peroxide or chlorine gas. The latter not only bleaches the flour but also alters the flour proteins, making them less inclined to form strong gluten.

Today, consumers prefer chemically bleached flour over unbleached because they associate the whiter color with higher quality. In our tests, some of the baked goods made with bleached flour were such a pure white they actually looked startlingly unnatural and “commercial” rather than homemade. We found that bleached flour can also give really simple baked goods, such as biscuits, an off flavor. Most bleached all-purpose flours tend to have less protein (about 10 percent) than unbleached all-purpose flour (closer to 11 or 11.5 percent). This difference in protein content can affect the way the flour absorbs liquid (higher-protein flours hold more liquid) and thus affect baked goods.

For all these reasons, when we say unbleached all-purpose flour, we mean it. As for specific brands, we tested nine leading all-purpose flours in a range of baked goods. Both King Arthur and Pillsbury unbleached flours regularly made for highly recommended baked goods, producing a more consistent range of preferred products than the other seven flours in the taste tests.

367